L e

MCR-70-327 6

, DEVELOPMENT OF A KSC TEST AND FLIGHT -
5 ENGINEERING ORIENTED COMPUTER
LANGUAGE - PHASE | REPORT

C. W. Case B | —
E. L Kinney o B
J. Gyure

Martin Marietta Corporation
Denver Division
Box 179, Denver, Colorado 80201

August 1970
Interim Report for Period July-August 1970
Prepared for

National Aeronautics and Space Administration
John F. Kennedy Space Center

KN
é

N .- ——— L .
| \SA-CK 6 EVELOPHENT A KSC TEST N72-15169
‘ ASA-CR-125260) DEVLLOPNSN'I_ OF A :(‘S X
. ;.gl) FLIGET ENGINEERING ORIENTED COMPU‘{EI\
D 3 ASE Interim Report, Jul. -
; LANGUAGE, FHASE 1 n o) ; nclas

. Aug. 1970 C.#. Case, et al (dartin i o cle
&ngietta Corp.) -Auq: 197¢ 74 p CSCL 095 b?/pS 12744
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce _ _
Springfield VA 22151 (G e) & '

N O T 1 C E
THIS DOCUMENT HAS BEEN REPRODUCED FROM
THE BEST COPY FURNISHED US BY THE SPONSOR-
ING AGENCY. ALTHOUGH IT IS RECOGNIZED
THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT
IS BEING RELEASED IN THE INTEREST OF MAK-
ING AVAILABLE AS MUCH INFORMATION AS

POSSIBLE.

PREFACE

y

This report contains the results of the Phase I effort of
the Development of a KSC Test and Flight Engineer Oriented
Computer Language Study. This Phase I effort was directed at
the examipation of existing related languages and their appli-
cations.(

Three languages, ATOLL, ATLAS and CLASP were examined in . -~
detail and their characteristics are documented in a language
characteristics table. A general review of several other test
oriented languages was undertaken. Information on ATOLL II,
MOLTOL, CTL, VTL, TOOL, ADAP, and ASEP is included in this re-
" port. Some general comments on other higher order languages not
related to testing is also included.

A description of the ATLAS compiler developed at the Martin
Company is included in the appendix.

ii

Preface .
Contents
I.
II.

III.
1v.

V.
VI.

VII.
VIII.
IX.
Appendix

CONTENTS

. -

Introduction + + + &« o « .+ .
Language Discussions
A. ATOLL o v v v v v e v v v v 0 0w
B. ATLAS « ¢ ¢ v ¢ v v o o v ¢« o o &
C.o CLASP v v v v v 6 v v v o o« o o
Do ATOLL II & v v v 4 o v ¢ o o o
E. MOLTOL . . . v ¢ ¢ v & o o o o &
Fo CTL . v ¢ v v v v v 6 s o s o o
G. VIL . ¢« v v v v v v v v @ v o o
He TOOL & ¢ v v v v s v v o o o o

Io ADAP . v v v v v v v v e e e e e

J. ASEP v i 0 i e e e e e
K. Other Languages - « . + « o+ « o &
Language Characteristics Comparison .
Deficiencies and Problems of Existing
Languages . « « « ¢« ¢ 4 4 v e e 4 .
Safeguards and Checking Provisions .
Programming and Reading Aids
Conclusions « « + & & o 4 &+ ¢ o o o o
Definitions « ¢« v ¢ ¢« ¢« ¢ ¢ « o o o &
Bibliography .+ « « « o o o« o o ¢ o &
-- An ATLAS Computer . . « &+ & & & & &

111

.‘}’ "‘

93 ll

Ie INTRODUCTION

This report covers the Phase I study task of the Development of a KSC

. Test and Flight Engineer Oriented Computer Language.

This task included the study of numerous languages that might provide
useful guidance and/or features for the development of the new language.
In addition, the study of existing language applications have provided
background and understanding of the role that a test-oriented language
plays in the acceptance and implementation of automation., Other results
of the Phase I study include a greater ‘appreciation of the degree to which
test system characteristics and limitations have resulted in the specialization
of '"test-oriented' languages, the degree to which test system characteristics
have dictated test philosophy, and the evolution of test system oriented
programmers from both test engineers and professional programmers. -

The comparison matrix, Table 1, lists characteristics of three of the
languages studied, and some particularly pertinent: features of other languages.
The CLASP language, while not test oriented, will most probably be a companion
language used in the origination of flight computer programs for space vehicles,
particularly in the areas of guidance and navigation. It would, therefore,
geem desirable to promote commonality between CLASP and the new language
wherever practical. More space program related test programs (in terms of
implemented test statements) have been written in the ATOLL language than
any other '"test-oriented'" language. It might, therefore, be expected to
contribute to the new language. The ATLAS language is rapidly receiving world-
wide acceptance for avionics and other unit testing, and many compilers are in
various stages of design. ATLAS is particularly English-like, strictly test-
procedure oriented, and test system independent. It might well contribute
significantly to the new language. :

Several of the other languages studied have commonalities with the above
three languages and with each other.

The next two study Phases will select characteristics desired for the
new language and prepare a language apecification. :

PRECEDING PAGE BLANK NOT FILMED

II. LANGUAGE DISCUSSIONS

This section contains brief descriptions and discussions of each
of the languages studied. An attempt has been made to provide background
information leading to the language definition, as well as seome genetel
conelusions relating to the impact that the language has had on the
program(s) using it. Unfortunately, there was not time to study all teat
languages in use throughout the country. It is believed, however; that
many features of the languages studied were based on studies of atill other
languages; as a result, these languages actually represent a much larger

basis for study than might be immediately apparent,

33 ll

II. A. ATOLL

Acceptance, Test, Or Launch Language (ATOLL) was developed early in
the Saturn development of automatic checkout. Initial RCA-110 computer
program development highlighted the necessity for a language which would
praovida a4 mope divese path from the test engineer, writing test procedures,
and the computer object program which would provide for the conducting of
Saturn tests. A specification for such a language was released in 1963.

The objectives of the language were to:

1) provide a language to be used in testing the Saturn stages
completely independent of the checkout equipment or locatiom;j

2) provide a language which would enable a test oriented engineer
to write the test programs necessary to test his subsystem
without a large training effort;

3) provide a language whose resulting test programs would
satiefy other documentation needs such as (a) detailed
test procedure, (b) serve as a test program for input
to the automatic checkout and launch test system, (c)
provide for test review and evaluation by project and
quality personnel, (d) provide a checklist for verifying
contractor test performance;

4) _provide a language format which is easy to learn and close
enough to test nomenclature to be easily taught and used;

5) provide flexibility of expressing simple test functions
and grouping of these into more complex routines describing
a test procedure;

6) provide for ease of making changes.

ATOLL falls short of meeting all of the objectives originally proposed.
The use of mnemonics and abbreviations is common. The majority of
abbreviations are logical and easily remembered, However, many of these have
variations in the statement format which cause them to lose their identify.
Some abbreviations are programmer oriented and not test engineer vernacular,
Others are strictly checkout equipment oriented and lose their ease of
remembering on the part of the systems test engineer. Test article functions
have terms applied which must be referred to in a table for understanding.
Comment cards are used to provide understanding but are not interpreted by
the ATOLL compiler and thus do not insure that the action requested is ’
identical to the comment message. Had the ATOLL met all objectives proposed,
the test statement would have included the comment information and would have
been interpreted by the compiler, resulting in a ome-for-ome relationship,

II. A. ATOLL (Continued)

All programmaer oriented terms and checkout specific terms would have
been replaced with terms familiar to the test engineer. Examples of
programmer oriented operators are SETX, INCX, SFLG, TFLG, MSFG, MISG,
SFIT, CODE, BLOK, EXEC, BEGN, RETN, MLSR, CALL DEOL, EXEM, EWD, GOTO,
PROB, PROC, PREM,

Examples of test equipment oriented terms are DISA, DISO, SSEL,
MDSO, MNTR, TERM, DMON, DPLY, DPYM, SEMI, DFLG, RGMT and RCDC.

Examples of test oriented terms which imply functions which a test
engineer may accept in lieu of more familiar tems are RECD, READ, DELY,
TEST, and SCAN.

The increased number of ATOLL programs over the last five years
indicates a willingness to attempt automatic testing. This can partially
be credited to ATOLL by providing a tool which more adequately provides
an interface between the test engineer and the checkout equipment. The
numbeér of switch positious on the subsystem consoles implies that manual
capability and desire preceded the present use of automatic checkout. ATOLL
has provided a capability for test engineers to communicate with the program,

Training of test engineers to the level of competence necessary-has been quoted .

in the neighborhood of 40 hours instruction and a few months.of ou-the-job
applying the language to be fully competent. '

As pointed out in other reports, a shortcoming of ATOLL is lack of
provision for arithmetic operations, This has resulted in the need for
many machine language programs and subroutines. All readability is lost
whenever the machine language programs are executed. This factor violates
the objectives originally established for ATOLL toward providing ease of
verifylng contractor test procedures, test review, and quality acceptance
in addition to providing a capability for the test engineer to write his
own test procedures. A programmer must communicate with the test engineer
to insure his procedures are being implemented correctly into machine
language test programs, :

From the initiation of the early ATOLL programs until the present time
(5 years?) a gradual cxoss pollination has taken place between test engineers
and professional programmers. The test engineers have, through training and
use, come to accept ATOLL, and the increasing number of programs utilized
today, attests to its acceptance. Oun the other hand, programmers assigned
to the Saturn program have become familiar with the checkout equipment and -
the Saturn vehicle requirements. The programmer side of the house feels
that indeed the ATOLL is an English-readable test oriented language. The

. test engineers feel that while it is useful, the terms employed and the

formats are not test oriented; that to fully understand what 1s going on
requires more study than they are willing or able to commit in addition to
looking up too many checkout equipment/vehicle terms to verify that the
correct vehicle function has been addressed. In addition, more continuous
monitoring capability and an arithmetic capability is desired.

t
i
i
'

i
!

-

II. B. ATLAS

The Abbreviated Test Language for Avionics Systems (ATLAS) was originated
and 18 maintained by a fluctuating group of knowledgeable perscunel from many
organizations, including airlines engineering and maintenance organizations,
software design organizations, avionics manufacturers, aircraft manufacturers,
and automatic test equipment manufacturers. Both domestic and foreign firms
are represented, The military services have also participated. The sponsor
of the group is the ATE Subcommittee of the Airlines Electronic Engineering
Committee, AEEC performs the general function of generating and promoting
standardization of avionics and related systems for use by commerctal airlines.
The ATE Subcommittee's charter is to promote standardization in the area of
Automatic Test Equipment.

An early conclusion of the subcommittee was that the major gource of
automation difficulty was the lack of precise, test equipment independent’
test procedures that could be used as a basis for generating automatic test
equipment programs. Consequently, the subcommittee directed its full attention
to the specification of ATLAS, with the intent that all future overhaul and
test manuals for avionics procured by the airlines must contain test procedures
written in the AZH&F language. The ATLAS specification was released
June 1, 1969, s and the implementation of the language is well underway.
Since current avionics units used by airlines do not have vendor supplied ATLAS
test procedures, the ATE manufacturers and airlines using ATE are at present
the major writers of ATLAS Test Programs. Eventually, they will become the
readers and users of the vendor prepared test programs,

ATLAS is by far the most readable, English-like, test-oriented language
of all the languages studied, It purposely attempts to avolid any test system
or test equipment orientation so that the airlines might exercise greater
lattitude in selecting and procuring their ATE. The language concentrates on
the specification, checking and timing of interfaces with the Unit Under Test
(UUT). Some general characteristics of the ATE are assumed, however, as
illustrated by PRINT, DISPLAY, RECORD and other statements. Test system
capability to provide all specified interfaces is also assumed,

In view of the relatively short time since the ATLAS specification was
released, it has received remarkable acceptance, most probably due to its
readability. Jacobi Systems Corp. profitably conducts training seminars
several times a year. The British Ministry of Technology has endorsed ATLAS
for technical school courses. The Navy has contracted for a compiler for an
ATLAS-derivitive for use with the VAST system. Other non-airline applications
are increasing. The ATE Subcommittee and many of its members are swamped
with requests for changes, additions, and clarifications from diverse sources.

Regponse to ATLAS is not all positive, particularly for non-airline
applications. Some necessary specification changes approved by the subcommittee
over a year ago have not yet been released. ATLAS compilers are expeunsive and
require considerable computer memory. Interfaces between an ATE operator or
test conductor and the ATE cannot easily be defined because the language is
independent of the ATE (most ATLAS-based variations are a result of this
characteristic). The general philosophy of avoiding abbreviations is disagreeable

1
f

|

II. B, ATLAS (Continued)

to test writers, particularly with primitives such as MEASUREMENT, IMPEDANCE,
and TRIANGULAR WAVE SIGNAL, Due to its UUT interface orientation, it is not
readily adaptable when the test system or UUT interfaces are not totally under

ATLAS program control (as might be the case with an intervening data acquisition

system)., Provigions for non-UUT interfaces are non-existant.

In gencral, ATLAS may indeed provide a basis for a new aerospace systems
test-oriented language, but not without major modification. '

II. C. ClLASP

The Computer Language for Aeronautics and Space Programming (CLASP)
developed as a result of a study undertaken for the NASA Electronic Research
Center by Logicon, Inc.2 This study compared the Space Programming Language
(SEPL) develoged as a result of a study carried out by System Development
Corporation 3»4 and PL/1 for use in the development of real~time aerospace

programs for NASA,

As a result of this study, it was determined that a number of deficiencies
existed in both SPL and PL/1 with regard to the application NASA specified. A
new language, CLASP, was proposed which was based on SPL. Further development
of SPL has resulted in making CLASP a subset of the more general SPL., CLASP
is now identical with the SPL/MARK I subset,

SPL and its subsets, including CLASP, have been designed Specificaily to
assist in the writing of programs in the aerospace field. The software
requirements of this application area are at present somewhat restrictive
due to the nature of present day aerospace computers, However, future soft-
ware requirements are tending toward increased complexity and sophistication as

" new hardware with more capabiljties becomes available. The requirement of a

higher order language for this application area arises because of these develop~
ments.,

CLASP was designed using ground rules which require the language to be
of immediate and practical use with aerosapce computers of the present and
near future. This requirement resulted in a language oriented to arithmetic
and logical manipulations with primary emphasis on the solution of guidance

and navigation problems,

CLASP is a procedure-oriented language for use by a professional programmer.
Due to the many computer dependent features included in the language, a detailed
knowledge of the target computer is required.

CLASP has several of what are considered by its designers to be unique
features with respect to other higher order languages. Extensive fixed point
capabilities with respect to scaling control are provided. A capability exists
for scaling control over intermediate results of arithmetic operatioms.
Temporary variables can be declared which take on changing attributes depending
on usage. Optimizatior. compiler directives exist which provide modifiable
degrees of optimization with respect to both space usage and execution time.

CiASP compilers are currently under development and the language is still
evolving. The CASLP language, as presently defined,iia not suitable for direct

use in a test-oriented environment.

II, D. ATOLL - II

ATOLL-II was developed under contract by General Electric Company as an
alternative or replacement for ATOLL for use in Saturn checkout. It was
never implemented, buta reference manual 13 and compiler were prepared.

The language is based on Fortran with the addition of real-time test-
oriented and Saturn ESE oriented statements, It is more English-like than
ATOLL with terms such as TURN ON, TURN OFF, WAIT and a few others. Some
other statements and terms are more specifically programmer-oriented (DO, PROC,
INCORP, DECL). It is not particularly test-engineer oriented in much of its
vocabulary. It does include capability to initiate, synchronize and terminate
parallel programs, including continuous monitoring, either in a single or dual
computer configuration. It also includes arithmetiec capabilities that were
not implemented in ATOLL, ‘

Declaration and assignment capabilities are extensive and would require a
significant amount of training for most test engineers,

The format of statements includes fixed card column fields for Control,
Time, Label, and Statement; however, these may be reassigned at any place in
the program by a Card qumat declarative.

A general obserVation is that ATOLL~II includes many capabilities which
would be seldom used, but would require significant user training and retraining
for continued proficiency by engineers whose principle function is not
programming.

£

fi:LLJ

\

II, E. MOLTOL

MOLTOL, Manned Orbiting gaboratory Test Oriented Language, was designed
under contract to the Air Force for use in the checkout of the Manmed Orbiting

Laboratory. It was never implemented due to MOL program cancellation. A
MOLTOL Tese weiter's Neference Manual, *! was prepared, and has some areas of

incompleteness. MOLTOL almost totally includes ATOLL-II and the discussion
of ATOLL-II is applicable. A few significant additions are discussed heein.

All test statements are assumed to be executed with a fixed time interval
spacing. Language statements are included to control these execution intervals,

Communications with an on-board computer are accommodated with a DISPATCH
statement, :

0
Definition of alternate terms which can be. substituted for language N

~primitives is allowed with a statement such as:

DEFINE END AS FINISH
or
DEFINE MONITOR AS NONSENSE

(This capability has obvious ramificationa.)

10 o
- i

I |

II. F. CTL

The Computer Aerospace Ground Equipment Test Language (CTL) was
developed to provide a near English test oriented language for use
with the Titan IIIC/MOL checkout equipment. The development of this
language emphasized the role of the tost onginear in expresaing commanda
arid criteria to the test article completely, simply and unambiguously. The
role of the customer, reviewer and user was considered and made it imperative
that the format be readily understood by all.

Terms ware selected which supposedly were familiar to the test engineer
and which would be readily translated to machine instructions. Diagnostics
played an important part in providing safeguards against illegal or hazardous
operations while not restricting the test engineer's flexibility.

A second objective of the CTL was to reduce the writing burden of the
test engineer by providing sequence preparation aids. These aids enabled
the writer to abbreviate his tests in such a form that the translator

- could expand the statements into fully defined lists that could be easily

understood and reviewed by all interested parties. The CIL/Translator ratio
amounted to a 20/1 expansion for a typical test sequence. Each CTL statement
required about four computer words after translation which provided a reduction
in writing by the test engineer of one CTL statement to 80 machine language
statements,

One set of resident programs are used for all test sequences, variations
being accomplished by the order of the test language statements and differences
in the statement modifiers. With this complete set of programs new or modified
sequences requires no additional programming. The sequence which is described
by a string of data, is a subset of instructions plus data that would be
required for an assembly language or compiler description of the test. The
translator provides for efficient packing and conversion of the language state-
ments which permits a reduction of 1/3 to 1/10 in memory space requirements.

The importance of an interpretive language is summarized below:

1) test techniques and requirements are not generally under-
stood by assembly language programmers;

2) test englneers familiar with vehicle test requirements can
prepare sequences in near-English format;
4
3) customer and contractor quality control personnel can
- easily understand and validate the sequences°

1

4) changes to any sequence can be accomplished by an engineer
by stating the change in test language-

5) field modifications are easily accomplished;

11

e

II. Fo CTL (Continued)

f

6) the writing burden has been reduced almost one hundred
fold;

7) on=line use of CTL enables generatibn and execution of
tests on-site with near zero delay.

CTL consists of 20 basic elements or verbs and their associated modifiers.
Elements can be roughly divided into four classes:

1) Discrete signal observation and control - APPLY, RESET, and
CHECK/DISCRETE.

2) Analog signal observation and control - CONNECT, STIMULATE,
MEASURE, and CHECK/ANALOG.

3) Test flow control - BEGIN, END, TIME, SET, DEFER, and CONTINUE. -

4) Special - DISPLAY, SAVE, and RESTORE.

Several elements are provided as tools for the test engineer. These tools
provide a capability which eliminates repetition of recurrent test sequences
and detailed descriptions of frequently used groups of data.

These elements, designed to facilitate test sequence preparation, include:
1) SEQUENCE;
2) REPEAT;
3) REP/TEST;
4) SYSTEM/TEST

" SEQUENCE is used in on-line control., It makes use of established library .
test sequences within any other sequence, REPEAT, REP/TEST, and SYSTEM/TEST
are facilities of the tramslator whereby repetitious data or elements are
ingserted into the control file using these elements as a mode.

The basic building block of CTL is the test element. Each element has a
set of modifiers associated with it that amplify the element for a specific

operation. R

Single Test groups elements together to satisfy some unique control
response, or display function to make up a single test. One to several
dozen test elements can be included in a single test which is assigned a-

unique number.

Repetitive Tests are tests which are repeated frequently with slight
parameter variations. The repetitive test allows the test writer to establish
the order .and number of test elements required and by simply varying the
numeric value assigned to the parameter list and calling out the unique
repetitive test name, repeat the test without restating each test element.

The repetitive test name is five alphanumeric characters, and the parameter

list can contain up to 25 variables.

12 |

II. F. CIL (Continued)

r

The next level is called a sequence which consists of a number of Single
Tests and/or Rep Tests. Two types of sequences exist: Library Test Sequence
and Test Sequence. A Library Test Sequence 1s a special version of a Test
Sequence., A Library Test Sequence is used whenever a function (such as apply
vehicle power) is used in many other test sequences. A Library Test Sequence
can be called singularly from the test console or by any currently executed
sequence, The Library Test Sequence will have a number of the same form as
a Test Sequence but will be uniquely identified as a Library Test Sequence.

A Test Sequence is a collection of Single Tests, Repetitive Test, and
Library Test Sequences arranged in a logical order to accomplish a specific
testing or control function. Each Test Sequence can be called from the test
engineers console. Any Test Sequence may call other Test Sequences. |

CTL fails to meet the ideal objectives which were established at the
onset of CTL development from the standpoint of readability and the use of

" terms familiar to the test engineer. As in the case of ATOLL, the majority

of terms are programmer oriented and test equipment oriented rather than

test engineer oriented. The use of comment cards helps to £i1l in the missing
links, but this information is not interpreted. Therefore, there is no assurance
that the comment card and the CTL statements coincide. The elements may be
spelled out or abbreviated which supports readability providing the meaning of
all elements and modifiers are understood. In the application and measurement

of discrete and analog signals, readability is sacrificed by attaching an
alphanumeric label to each stimulus and measurement signal. Rather than stating:
"TURN FCC POWER ON", the statement would read "APPLY 1D747'. 1In ATOLL this
statement would read '"DISP1 MDO, 1823", The readability is less than

desired in either case. Of all terms used in the implementation of program
generation, the majority fall into test equipment signal interface names which
are identified by an alphanumeric number. While it is true, many years

of familiarity will enable the test engineer to identify a signal name and
function with its assigned number, he must still resort to tables to determine

. the name and function of many. The individual reviewing, verifying or approving

must resort to a table of terms almost entirely, which increases the time span
of his task and affects the desirability of the job.

As the Titan III-C/MOL Program was canceled before the full utilization of
CTL could be realized, it is difficult to assess the degree of accepting automatic
testing directly related to having a TOL. However, the philosophy was such
that automatic testing was going to be a way of life and with this ground rule
at the onset of the program, everyonme related to the task accepted it. However,
experience with a previous program was accepted to the point that the need and -
use of a TOL on the CAGE program was a foregone conclusion prior to initiating
any design effort. The time and effort expanded upon the CTL was so generally
accepted that the need and requirements were included in the VIRING SYSTEMS TEST
EQUIPMENT as soon as trade studies resulted in the decision to include a
computer in the ground test system, The availability and experience with a TOL
has certainly increased the general acceptance of automatic testing at the
Martin Denver Division. ‘ o ‘

13

II. F. CTL (Continued) v - .

As 18 true for ATOLL, a shortcoming of CTL is the lack of provisions
for arithmetic operations. There is also no provision in CTL for calling
machine language programs. Both of these capabilities might have been
required for guidance checkout. The guidance system for all Titan vehicles
has been the responsibility of the guidance associate contractor as well
as the provisions for its acceptance and testing. This has resulted in the
guidance contractor supplying the necessary equipment for guidance checkout,
and no provisions are made in CTL. All other systems were accommodated by
CTL.

The software group for the CAGE test program consisted of design
engineers, professional batch operations programmers, and real-time
programmers. During the course of the design, cross pollimation of
engineers and programmers did occur. For the most part, engineers became
more programmer oriented, a few of them slipping over to the programming
side of the house. Several of the programmers professed a desire to remain
in real-time programming effort and were assigned to the Engineering Department.
The selection of specific elements resulted from decisions by design engineers
rather than test engineers. For this reason, and as a result of cross
pollination, it is felt by those involved in CTL development that it is
indeed a near-English test engineer oriented test language. '

14

II. G. VTIL

The Viking Test Language (VIL) was designed to serve as the communication
medium between the test engineer and the Viking System Test Equipment (STE).
Since many organizations and individuals are included in the writing, reviewing,
and implementing of test procedures, it is necessary that the VTL be designed
as a conversational english language requiring a minimum of training for use.

- The majority of these people are not programmer oriented or professional

pProgrammers. -

A prime objective of the VIL was to simplify the test engineer's burden
by including several shortcut features into the language and Viking data
files. Symbolic data symbols, group numbers, and system repetitive tests
are available to reduce the data input requirements.

The test sequences, written in test language, are translated by-the off-line
-software system. :

The test language translator processes input written in the Viking test
language. The test sequences, library tests, and referenced data is read
from the appropriate files and processed. The output of this process is a
machine oriented sequence for the on-line system and an English language
tabulation of the composite sequence. The machine oriented sequence may be
placed in core memory, magnetic tape or onm the rapid access disk file.

As the language evolved, the specific test equipment configuration was
unknown. It was assumed that this equipment would consist of a digital
computer with core memory, magnetic tape, and disk memory. The language was .
designed specifically to meet the requirements of the Unit Under Test, in this

- instance, the Viking Lander Capsule.

The language structure is based upon building test sequences consisting
of test blocks, system repetitive tests and library tests arranged in a
logical order to accomplish a specific test or control function. Any test
sequence may be called by the operation from the test console. Any test
sequence may call other sequences.

The lowest level is the test element. Each element performs a specific
purpose such as commanding a relay closure, establishing a stimulus, delay,
etc., Modifiers are associated with test elements which amplify the element
to a specific operatiom.

The second level, referred to as Test blocks or System Repetitive Tests
consists of logically assembled test elements which satisfy a unique control,’
response, or display function. The number of test elements in a test block
may vary from 1 to several dozen. System Repeat Tests (SRT) are also second
level in the language organization. These are used to define often repeated
operations, They provide a shorthand which allows the test writer to use a
predefined set of elements by only specifying the SRT name and listing the
parameter table, SRT's are defined on the system level and are entered into the
data files so that they may be used by all sequence writers.

15

-]

II. G. VIL (Continued)

The next higher level of the language organization is the sequence
level which is constructed from test blocks and/or SRT's. Two types
of sequences are provided: Library Test Sequences and Test Sequences.

Library Test Sequences consist of frequently used functions such as
"Apply Lander Power.' Within such a sequence, all required prerequisites S
and control/response necessary statements to satisfy the function are : '
contained, A library test sequence can be called from the test counsole
or by any currently executed sequence, The library test sequence has an
identifier of the same form as a test sequence.

A Test Sequence is a collection of test blocks, system repetitive tests,
and library test sequences arranged in a logical order to accomplish a
specific testing or control function. Each test sequence can be called
from the test console or by currently executed sequences.

"The objectives of VIL and much of the conceptual design incorporated
ideas from its predecessor, CAGE Test Language. Fewer elements are included
with several of them being unique to the Viking test article. The short-
comings of the ATOLL and CTL are also found in this language with the
exception of a capability for communicating with the onboard digital computers.
A test element named "LINK" provides a capability for communicating with the
Guidance Control Computer GCC’'and the Command Control and Sequencer (CCS)
memory. Run and halt commands, as well as load and verify single data words
or blocks of data words or instructions. Data words can'be read out of the
GCC or CCS memory or registers for verification, analysis and display.

Example: LINK Wwco17 LOAD MO134

would cause data block WCOl7 to be loaded into the GCC memory starting at
location MO134. Data blocks WCO17 would have been previously defined in
the data files.,

LINK WCOl7 VERIFY FLAG MO134 would cause the block of data
words defined by WCOl7 to be read out of the GCC memory starting at location
MO134, transmitted downlink to the Viking Systems Test Equipment (VSTE),
compared against the WCOl7 data block that was loaded in the previous example,
and a flag to set for each word that does not compare properly. If all words
compare, no flags will be set., :

LINK RUN will cause a command to be sent to the onboard computer or
sequencer to initiate onboard operation of their function.

The format and selection of operators or elements are definitely more computer
and STE oriented than they are test engineer oriented. It is true that the test
engineers’' writing effort is greatly reduced but at the sacrifice of readability
and useability by organizations other than the originating organization. It
would be difficult to get widespread test procedure acceptance on the basis of

VIL programs. :

16

- II. G. VTL (Continued)

V7L as ATOLL and CTL fails to provide an arithmetic capability which
appeavs to be the result of incorporating requirements of the specific
test article and system test equipment--in this case, the Viking Landex
Capsule.

In the case of Viking, time, schedule, and manpower have affected the
test philosophy and the test language. Having developed two previous test
languages for two different programs, sophistication based on prior
experience was certainly possible. However, the constraints previously
mentioned in conjunction with program requirements provided guidelines

which dictated to some extent the nature of the test language to be provided.

II. H. TOOL

The Onboard Checkout System's (OCS) Test Oriented Onboard Language (TQOL)
is the culmination of a development cycle beginning in 1965 and extending into
1970. This effort was undetrtaken by the Denver Division of Martin Marietta
for the NASA Manned Spacecraft Center. The purpose of this effort was to
develop an independent, real-time, computerized system for verification and
monitoring of experimental and developmental subsystems for various spzce
vehicles.

In 1966 an OCS breadboard, demonstrating the feasibility of the 0OCS
concepts, was delivered to NASA.> An initial versiom of TOOL was provided
at that time. Development was coatinued with the congtruction of a
prototype unit called the digital test set, delivered in 1967.% Another
version of TOOL was provided at that time. Development continued with the
resulting del%very of a flight packaged OCS with the pregent version of
TOOL in 1970.

TOOL8 is part of an on-line interactive multiprogrammed system which
enables a test engineer to create tests which utilize the 0CS hardware.
The system is self teaching through the use of extensive cuing techniques.
A test engineer can write new tests, roview tests previeusly written, and
modify in considerable detail previously written tests.

Translation of tests written in TOOL results in data list entries
which are then stored in computer memory for later execution. An interpreter
passes entries from the data list to the appropriate routines for executiom
of the desired test. This differs from the compilation approach in that
a compiler translates input source statements into the machine code of the
target computer., Translation of input source code into data list entries
results in a considerable core savings for the storage of tests.

The TOOL system provides for the concurrent execution of a multiple
number of tests along with the asynchronous processing of hardware interrupts.
Tests can also be executed while monitoring operations are active. Tests
can be written, reviewed, and modified while other tests and monitors are
operating. Priorities can be assigned to the execution of tests. Allocation
of the limited hardware and software resources available is a function of the

TOOL system,

A password can be attached to a test to allow only authorized personnel to
have access to that test. Protection keys can be set which prevent improper
operation or alteration of a test.

TOOL is an English-like language making extensive use of readable
abbreviations as modifiers to language primitives, It is designed as a
special prupose, application oriented language. Input 18 in a fixed format.
Simple data variables are provided along with a limited expression solving
capability. Language primitives are OCS hardware and system oriented, FORTRAN
like unconditional branthing, conditional branching, and looping are provided.

18 . - fryy

II. I. ADAP

The Adaptive Intercommunication Routine (ADAP) also referred to as the
Block II ACE system was developed primarily to enable the automation of
many test sequences., In pre-Block II testing the basic framework of the
software was the same as is currently used with ADAP. The test requirements
using ADAP for implementation require the same formalized input decks that
has always characterized programming requirements submittal by ACE users.

ADAP provides for storing programs on magnetic tape and the calling of
automated sequences from the test consple. Portions of the Test File Tapes
(TFT) are loaded from tape and stored in core: Systems Monitor, U/L and
D/L Control, and ADAP control (subprogram). Other programs are loaded by
the Monitor and executed as requested by the test engineer from his comsole.

The automatic operations desired are stored on tape in groups. Each
group counsists of one or more Intercommunications. Such Intercommunication
counsists of one or more sequences for the computer to execute. The sequences
simulate data entry normally performed by a test engineer's execution of an
R~START or C-START switch at his console. A sequence may include command
generation, transmission, and monitoring of downlink responses before a
subsequent operation can take place.

Requirements for test programs are originated by contractor systems
engineers. The contractor then translates these requirements into formal
subprogram specificatione fully describing all parametric requirements and
operationa of each subprogram., These specifications are then submitted by
the contractor to the computer programming group after NASA approval.
Professional programmers write the subroutines and perform the mechanics
necessary to insert the subroutine into the Test File Tape.

The parameter cards submitted to the programming group by the contractor
are unique to ACE and are not intended to provide readability. The program

" was not designed to aid the test writer or to improve readability by

reviewers. A programming input scheme had been in operation which utilized
the ACE-S/C in a manual mode., The addition of ADAP enabled a more closed-
loop automatic mode to be implemented.

Program Requirements Processing Specification (PRPS) cards are prepared

for both Uplink and Downlink equipment utilization and interface requirements.

In addition, on Operational Checkouq Procedure (OCP) must be prepared. The
OCP 1s a sequential description of the order of START executions, START
switch settings, and the expected response on the various control consoles.

A Test Engineer Test Oriented Language would be expected to accomplish both

of these tasks within a much shorter time span and improved acceptance
routines.

ADAP has been responsible for implementation of Automatic test programs.
In 8o far as the degree of automation currently experienced with ACE-S/C and
the acceptance of automation attributed to ADAP, a need for more automation
was pushed by one of the contractors and ADAP was proposed as a means to
accomplish this end. The need involved time: performing one manual ACE Test
consumed 2 hours; when implemented with ADAP, the test time was reduced to

fifteen minutes. In this regard, ADAP has'attributed to more general acceptance
of automation by ACE users. . :

19 L

S

2 J

II. I. ADAP (Continued)

The test system characteristics definitely affected the implementation
of ADA? as similar procedures for implementing tests are carried on with
. ADAP test program inputs. The formerly manual mode of test initiation was

incorporated into the automatic mode programs by simulation of START switeh
execution,

Test engineer and programmer interfaces are rigidly controlled by the
documentation requirements initially implemented. As a result of this
formal organization, test engineers and programmers for the most part are
isolated from the cross pollination process.

20 ' |

I1. J. ASEP

Automatic Sequence Execution and Processor (ASEP) has been developed
for use in ATM checkout utilizing existing ACE-S/C equipment and programming.
ASEP provides the capability for parametric controlled sequences of commands
and displays and also assures maximum core utilization through packing or
relocatable, relative addressed sequences, Whereas the ADAP teat sequences
were located on magnetic tape and called by test engineer or executed
§equence, ACEP programs are resident in core,

Test engineer interaction with the equipment and the program execution
is almost identical to ADAP. The C-START addresses are implemented in the
same manner and with the same codes indicating the ACE-S/C Operating System
and Monitor will probably be used for SKYLAB A programs.

Automatic routines will simulate R-START and C-START exegution.‘

Programming requirements will be input to the programmer group in .
the same manner that ACE-S/K programs have been implemented in the past
with the use of Uplink and Downlink PRPS cards. One significant difference
will be in the specification of limits--these will not appear on the

Downlink PRPS cards.

ASEP is intended as a test language. As such, the test language input
may override the necessity for Operational Checkout Procedures and enable
the PRPS and test language inputs to provide the machine language object
program. Sixteen elements or operators are utilized. Many of these elements
such as ADD, GOTO, LEGAL, SET are computer/programmer oriented. ADD provides
for incrementing internal computer counters. SET can affect a counter, flag
bit, or event to a specifiedstate. LEGAL establishes the C-STARTS that can
be used to activate a particular routine. While GOTO is programmer oriented,
in areas where cross-pollination between programmers and test engineers can
take place, test engineers accept this term as well as such terms as BEGIN,
END, EXECUTE, INTERRUPT, and IF. Additional elements provided by ASEP
include AUTO ONLY, DISPLAY STATUS, DELAY, DISPLAY (40 characters, or only
some characters--leave rest unchanged, or display contents of address
counter) MEASURE, REMARK, and STOP. ASEP provides a capability for the
- test engineer to change limits via csrd reader input. An ASEP routine must
be inactive while changes are being made.

As ASEP has not been used on a program, its affect om acceptance of
automatic test sequences is an unknown. However, the availability of ASEP
for the SKYLAB program will undoubtedly insure that automation of test
sequences will be utilized to a considerable extent. The SKYLAB program will
be Huntsville's initial use of the ACE-S/C and the preparation of test. input
requirements caused some alarm early in the program. The development of ASEP
was initiated no doubt to simplify the test requirements for the test writer
and to encourage the utilization of the digital computer in its natural role.

¢ ‘ ‘
. e

21

II. J. ASEP (Continued)

The test system characteristics (in this case, ACE-S/C) very definitely
have resulted in specialized test language. The simulation of R & C START
switches, the method of handling parameter changes, and the display
characteristics are the most obvious characteristics which ara accommodated
in the language. '

Due to the ACE-S/C Programming Requirements Organization, it is felt that
test engineers and programmers will continue to interface through rather formal
documents which will inhibit any cross-~pollination. Each function is rigidly
bounded and buffered. Each will continue to perform his tasks through clearly
defined channels and process forms.

The objectives of this test language appear to have been satisfied. At
the outset, a method for closed loop automatic checkout maximizing core
usage wus J2sired. These appear to be provided. The test article required
no more and the checkout equipment is capable of meeting these requirements.
Comparison of this language with those previously discussed indicates the
same shortcomings of the majority in the form of readability, completeness,
arithmetic operators, and in the provision of a document which serves the
requirements of test engineer, quality control; project verification, and
management review, 4

22

II. XK. OTHER LANGUAGES .

The languages previously discussed are, with the exception of CIASP,
oriented to the programming of test and checkout applications. They are
special purpose languages defined for use in a particular problem area.
Many other higher-level programming languages exist, some for special

.purpose applications and others designed for more general usage. It is

relevant to this study to give some consideration to these other languages,
at least to be aware that the problems encountered in creating a test and
flight engineer oriented Computer language do not erd with the specification
of that language.

Significant questions remain to be answered with respect to the actual
development of a compiler and operating system for that language. One of ‘
the most basic of these questions is in regard to the choice of a language Tt
for use in developing the system to support the problem oriented language
itself. Considerations relevant to this choice are of a completely different
nature than those governing the design of a problem oriented language.

Questions arise with respect to the best utilization cf professional programming
talent to treate the necessary supporting systems in a timely and efficient

manner. After these systems are developed, the further question of proper

long-term maintenance arises. : .

The utility of higher-level languages for application to specific problem
areas is recognized. The question then becomes one of whether such languages
are available to write compilers and executive systems. At least two such
languages, both reasonably widely known, are available. A small number of
lesser known languages are available specifically aimed at compiler writing.
One language, currently under development, shows promise of being a very good
choice for both compiler writing and executive system development.

The discussion to follow will give an overview of two multipurpose languages,
JOVIAL and PL/1. Both are languages that have proven themselves in the applications
under consideration as well as providing capabilities in many other areas.

JOVIAL - Jule's Own Version of the International Algebraic Language was
developed by the System Development Corporation and the first compiler
was operational in 1960. The language has seen extensive military use
and a version of JOVIAL is a standard programming language for Air

Force Command and Control Applications. The Command and Control Appli-
cation requirements necessitated a powerful language combining a balanced
set of numerical scientific calculation capabilities and data- handling
capabilities.

The basic objective of JOVIAL is to provide a procedure-oriented language
for the use of professional programmers in solving large complex infor-
mation processing problems. The language is considered to have fulfilled
its objectives but has not been used extemsively outside of military
command and control applications. i

23

IX. K. OTHER LANGUAGES (Cont)

JOVIAL has been successful in techniques whereby JOVIAL compilers have.
been written using the JOVIAL language itself.

PL/1 - This designation is the name of the language and is not an
acronym. PL/1 was developed by IBM and the first compiler went

into operation in 1966. The language was designed to be applicable
to all those areas previously covered by FORTRAN (a scientifically
oriented language), COBOL (a business-oriented language), and JOVIAL.

PL/1 is a procedure-oriented language for which almost all concepts
relating to that type of language have been implemented. It is
designed for the use of professional programmers. '

-The language has been successfully used for writing compilers and
operating systems. l

Another language which merits consideration for the development of
compilers and executive systems is the Space Programming Language (SPL).
SPL is an outgrowth of studies undertaken by Systems Development Corporation
regarding spaceborne software. JOVIAL and PL/l were considered the best
available languages for the entire aerospace application area. Neither
of these languages met all requirements, however. As a result, a new language,
SPL, was defined. This language 18 an extension of JOVIAL.,

The CLASP language, one object of this study, is a subset of SPL.
Study of the capabilities of CLASP will perhaps be indicative of the power
of SPL. The complete language, designated SPL/MARK IV, is expected to be
specified by the end of 1970 and will contain features usable on aerospace
problems and real-time programming tasks. Due to its mnature as an extension
of JOVIAL, compiler writing capability should be fully implemented in the
language.

The language is being developed as a standard language for space
applications and, as such, will probably be involved in NASA future pro-
gramming efforts. SPL merits attention as development progreases to determine
if stated goals can be met.

24

pE-y R'

III. LANGUAGE CHARACTERISTICS COMPARISON

The form and content of the comparisom table on tha following pniea
18 fashioned somewhat after the characteriastice identified by Sammet.
An attempt has been made to cover the gemeral and non-test-oriented
characteristics at the beginning and the more technical and test-oriented
characteristics toward the end.

Many semantic and conceptual definition problema exist between

programmers and engineers and between engineers with differemt backgrounds. '

A glossary of definitions has been included in the hope of alleviating some
of these difficulties. , o .

A

...},.‘

" [4

.TABLE 1. LANGUAGE COMPARISON TABLE

Purpose -

Characteristic
1
ATOLL Provides n test-oriented iahguagé

vAcceptance Test Or Launch Language

Lo

for use Iin automatic checkout and
launch of Saturn stages and vehicles.

ATLAS

Abbreviated Test Language Avionics
Systems ‘

Test oriented, test equipment inde=-
pendent, English-like language for
use by test engineers and technicians
to document test procedures for shop
tests of commercial airlines avionics
units and to program general prupose
Automatic Test Equipment.

Eventually to be written by avionics
suppliers and used by airlines,

CLASP

Computer Language for Aeronautics
aud Space Programming -

Procedure~oxiented language for use
by professional programmers iu the
development of real-time derospace
programs for aerospace computers:
emphasis on guidance and navigation,

b

Other Languages

26

.TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED) .

Language Reéponeibility

2
ATOLL

Who has Implementaed the Language

3

This language was develéped by IBM
for the NASA-MSFC to be used

specifically with the RCA~110A
- computer checkout facilities,

ATLAS

SATURN contractoré, (Boaing; NAA, DAC,
& IBM) for Stages S-IC, SII, S1VB
and IU utilize the language.

"
<

-

ATE Subcommittee of Afirlines

Electronicas Engineering Committee
" originated and maintains. ARINC
publishes documentation, . !

CLASP

Numerous ATE manufacturers for the
airlines, including MMC, Bendix,
Collins, Hawker-Siddeley Dymamics,

Sperry, etc. frequently implaemented
in a modified form.

Originated by Logicon, Inc. for:
NASA and maintained by UDIG (Users,
Designers, and Implementers Group)

Currently under development, .

27

“«

2

_TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED)
Documentation Naturalness of Statement Sqruccure
4 5

ATOLL

Specifications of the Operating
System 'for the Saturn V Launch
Computer Complex, Vol, II, IBM
No, 66-232-0001, NASA, MSFC,
Appendix A provides the necessary
informstion for using and documentinb
ATOLL test programs.

Statement structure lacks iéadability
due %o use of abbreviations, specific

"|nomenclature of interfaces, and

measurement terms, Comment cards
provide understanding of program
in%zent, but as comment cards are not
interpreted by compiler, comment and
statement may not coincide,

ATLAS

ARINC Specification 416-1,
ARINC Report 418

Statements start with flag and step
number, then verb and other easily
understood fields and/or phrases
which are generally self-identifying.

CLASP

Report "Flight Computer and Language
Processor Study'" Logicomn, Inc.

NASA CR-1520,

UDIG 48 currently developing a
language standard, :

Straight-forward to programmers
experienced with higher-level
languages.

[
(R

20

TABLE 1, LANGUAGE COMPARISON TABLE (CONTINUED)

Self-Extension Capability

Consistency of Rules

7

ATOLL

No self~ecxtensfon capability other
than the ‘capability for naming

aubroutine or subprogram which will

be executed by an EXEC operation,

The primary example of rules incon=-
slstency is related to the ovperator's
DSFG, RECD, and RCDC in regard to the
condition field, For the most part,
(Jn relation to display), a '"1l" in
the conditfon field clears the displaj
before preseuting the new messape.
In the above operatoxrs, the con-
dition field 48 1, 0O, blank, or C
and CLR must be placed in the varia-
ble field o clear the display.

ATLAS

No provinions for new primitivea
to be defined,

’

Very consistent rules,

CLASP . .
Function defining capability only,

Consistent between types of
statementa. T

29

P

TABLE 1.

o -

LANGUAGE COMPARISON TABLE (CONTINUED)

Self-documenting capability

Usexr Program Maintenance

ATOLL

ATOLL has self-documenting cap=:
ability through the use of comment

- cards (Remarks Cards).

ModJfications to programs must be

submitted to NASA-MSFC for approval,
then to IBM for implementation, and
finally verified on the S-TB or S~V
Brecadboard Facility before ‘acceptance
into the program,

ATLAS

The intent 48 that the atatements,
as interpreted by the compiler,
should suffice for documenting the
procedures, Comments, on separate
cards, have no restrictions.

"some instances.

Compiler acecessibility 18 a commen
problem and. has resulted in some
developuenz of larguage subsets or
adaptations for use in (object) test
equipment. Change (configuration)
control may dwarf such problems in

'CLASP

Primitives enable reasonable self-
documentation without comments, and
commentary can be inserted in any
atatement,

‘Maintenance of'user'programa may be

compliczted by the target machine
dependent featurea of CLASP,
Compiling computer accessibility

and project change controls may also
be more significant,

L]

ADAP: a ‘reverse compiler" prints
out explanations of statement .
actions.

TOOL: Very abbreviated statements
designed for interactive
review and alteration by the

operator with limited display.]

an

.TABLE 1.

-

LANGUAGE COMPARISON TABLE (CONTINUED) .

General Characteristics of Compilers

10

Format

11

ATOLL

The ATOLL Computer -18 a stand alome
program which may be run om any
Saturn ground computer (RCA~110A)

requires no additional software.

The format provides for both fixed
and variable fields. The compiler

"lprovides for multicard statements,
The program ias self contained an‘ !

Cont{nuation cards are permitted

whose number may vary dependent upon - |
Only the variable |

the operator code,
field 1s xrend on continuation cards,
Remarks cards (comments) have .
formats but are not jnterpreted by
the compiler,

ATLAS .

ATLAS compilers have been implemented
by several companies, including MMC,
MMC's ATLAS compiler is written in
FORTRAN for use on a 360/65 computex
and generates code for use in an
H-315 computer., The compiler is

. complex and xequives considerable

memory. See APPENDIX A, -

Restricted by generally logical
arrangement .of types of fields or
phrases., No limit on field or-
statement lengths after the statement
numbers.,. :

CLASP
ot curreantly available,

k-

Free Form,

g,

Format 18 variable
~ with control
> statement,

MOLTOL, ATOLL-II:

31

- “j ’

TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUZD)

-

Character Sat

12

8ignificanca of Bl&qﬁu

13

ATOLL

A-2Z ‘
0~-9 S '
*n 1 ()) . %

Blanks have no specific significanca.
Dependent upon certain operators, &
"0'" or a "1" must be provided to
indicate action and must be blank.
However, the same field may be -blank
for another operatérm,.

ATLAS

Upper case letters A thru Z
Numberals ‘0 thru 9 (also A thru F
for hexadecimals) .
Symbols + - % /., () . ' §$ =
Blank ,

(Lower case letters represented by
JA thru /Z when required for inter=
face identifications)

Blanks generally ignored in identid
fiers but used as delimiters in lists]
of connections, Successive blanks
ignored, ' "

 CLASP

letters A thru Z (upper case)
Numberals O thru 9 '
Symbols + =%/ , () ' § =
'Blank S

L]

Blanks used to delimit identifiers,

numbers, and primitives,

8uccessive blanks ignored,
PR)

B

-,r-w" N

32

TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED)

Comments or Noige Worda !

14

*

Operators

13

"utilized but arae.not intevpretad

ATOLL _
Commant or REMARKS .cards are

by tha gempiler, A "#'" {n golwmn 1 -
indicates a remarks card,) :

L S N e e |

No logical or arithmetic operators

other than Limif check and syerags
are provided.

ATLAS

Allowed enly om comment cards with
et glag or "B" flag. o A

Arithmetic o
Relational SO
Logical (Trivial ussge) -~ =

CLASP

May be ingcerted anywhere in a
gource program or statement,
Dekimited by double apoatrophaa
at beginning and end, -

Numeric
Logical
Relational -
Boolean

.

T

33

R,

.TABLE 1., LANGUAGE COMPARISON TABLE (CONTINUED)

Primitive Terms

16

Dalimitexs

17

ATOLL

All operators, table names, time
cells, and program names axe
primitives,

Card columns, commas, and blanks
in the variable fields .

"40 verbs (oparation or actien eodea)

15 Connections Fields (GND, (Phage)

ATLAS

30 nouns (types of signals)

80 modifiexra (characteristics of

. signalc) ‘ ‘
58 mise, (RANGE, FOR, BY, TO, atc,)

A, B, C. etc.)

Blank § ' ,

| . defined identifiers,

CLASP

79 primitives, 56 are reserved and
cannot be used as programmex

34

.

.TABLE 1. LAKGUAGE COMPARISON TABLE (CONTINUED)

Identifiers (labels & names) Arrays, Iinéa,_chuncuraa
18 . 19

ATOLL : . o .
Labals (applied through DECLARE . Tables, time cells, and discrete
statements) and NAME statements, . lists = - '

i -

ATLAS ' ‘

. 84nce,all identifiers are inclosed No general provisions except an
in quote marks, primitive combin- ability to.pass a two dimensional
ations generally allowed except $ ' "table" of values into a pre=~ .

() symbols, Identifiers can be - defined subprocedure when it is -
applied to data, dummy parameters, calleds - o

funationo, specified characteristics
of nounc, messages, predefined
procedures, etc,

CLASP Arrayo allowed with up to three

dimensions, Subseripts can be
Must begin with a letter: Ilimited to declared to be iateger constants,
8 characters: may be used for data, integer variebles, or implicitly
statements (follow with period), ;

. defined, Subscripts in references
‘subroutines (preceded by a period). cam‘be_znteger formulas or nope

. _ scalar (refereneing an ontire

. dimension), *
. ' T | Limited structure capability via
e ‘ o data grouping, No arrays of
' gTouUps,

ATOLL~II, MOLTOL: Broad capabilities
o , : : o © are provided, .
L ‘ - .. - 4ncluding lists,

R B ‘v .. '+ . pair-lists, arrays

.TABLE 1,

LANGUAGE COMPARISON TABLE (CONTINUED)

Program S8tructures

20

Block‘Sg;ucture

21

. ggn&lyé d wich an END card.

ATOLL Fixst and last ATOLL operators
of every test program will be NAME
and END raapectively, Subroutines
start with BEGIN and end with RETURN,
First card following ‘NAME must be a
REMARKS cards associated with NAME,
CODE card to follew NAME &ntl REMARKS
card which specified conscles to be
allowed intoraction with a spesific
program, Maching Language subroutineq
roquire NAMEZ, REMARKS, CODE and MLSR f

ATOLL programs are rastricted to .,
bloglks of 500 machine gtatemants,.

desirable block separation points in
ATOLL with the usa of BLOK,

ollowed by the binﬁry daek and

Provisions are made for communicating

ATLAS

All doclaratives (SPECIFY and DEFINE)

are containad in-the "preamble' which

must precede the- 1mparatives of the
"procedure,'

No specific provisions except a
compiler directive flag to identify
an allowable (manual) entry point,
This flag is sometimes used to
define allowable block boundaries,
which are compiler determined 4f
necessary in tha object syatem,

7

CLASP
Data declarations must appear before
the main body of tha program, The
main program consists of imperative
statements and compiler directives,
‘Pinally, procedures are located at.
the ,end of the main body of" thc
program,

Provided for conditional statewents
‘and loopss Also appears as a osub~
routine-like group.of ctatemsnts

1deptified by the primitive CLOSE,

L ' B

- 36

o

. i———

.TABLE 1,

LANGUAGE COMPARISON TABLE (CONTINUED)

Loop Btructuras

22

Subroutines Structufon

23

ATOLL
Loop structures are, provided with the
uae of GOTO, EXEC, BRGIN and RETURN
are the sctart and end peints of an
ATOLL subroutine, EXEC eReautaes
subroutine by name, .

ATOLL subroutines referred to by
name and called by EXEC operator,
BEGN and RETN operators identify
starting and concluding statements,
In addition, capability provided for
calling machine language subroutines,

ATLAS

. wenesws

G0 ?0,ALTER, REPEAT--= TIMES, PERFORM
TIMES can be used to construct
loopss B8ome loops are implied by
specific verbs such as MONITOR &
ADJUBT and still others could be the
rasult of object mashine and compiler
implementation, examples are START
WHEN, 8TOP WHEN, DELAX, WAIT FOR,
atc'

All subroutines and procedures are
defined using ATLAS
mentsg if in the 'preamble" (DEFINE;
- PROCEDURE,---) they are called .
by FPERFORM, 'wwe=', 6 {f within the
'brocedura" they. gre recallad by
REPEAT, STEPwnumbaer=THRU STEPw
numbexrw, .

imperative state=

2O

form FOR K.m n; by n, to n, where
ni i® an 1ntegeg variabla or conntqnt;‘

CLASP |
S8{imple loop capability provided -of

P:oéadure capability provided,
Multiple input paramsters and .
nultiple output paramaters, L

o

ATOLL-1X, MOLTOL, TOOL:
DO statemant provided

37

‘;‘
'

2r, T

e

,TABLE 1, LANGUAGE COMPARISON TABLE (CONTINUED)

9

[}

Diract Code Capabilitias

24

»

Interastion with Operating Bysteuw

" 23

| No direct cétde capabilitys ATOLL

ATOLL

loses control during machine language
program @xacution, R

Execution of Machine Language sub=
routines or tect programs Causes
ATOLL Executive to lose controle If
errors occur during program Tumn,
system halts and displays error
nessage to test enginsare
cases, tost cnginesr alternatives
are displayed,

In certain '

.Capability is provided to LEAVE ATLAS

-exacution,

ATLAS

and RESUME ATLAS, (presumably to allow
direct or machina code insertiom, butj
would also allow any other language
insertion, There are no communica=
t{one rules for such inserted seg=
ments except that a RESUME ATLAS
gtatoment in the direct code segment
would terminate the direct code

No provisions. - . ¢

CLASP
Direct Sode Sapability provided. -

e

Undéfined at presents

T

el N
cmiime TG0 et it ..
R A N IR

JTABLE 1., LANGUAGE COMPARISON TABLE (CONTINUED)
Data Typos Formula Types
26 27

ATOLL

Lacking arithmatic and logical
capabilities, this category. is
not applicabla to ATOLL, “.

NOT APPLICABLE
(8ame reason as #26)

ATLAB L
Real N Numeric ~ Real ‘
Complex , Complex
" Floating Point . . Floating Point
Text ' S Logical - Bit String comstruction
"and comparisons using
LOGIC BIGNAL
Boolean Relational - Critarias GT,
LT, EQ, NE, UL, LL
, Results: GO,
NOGO, HI, L0,EQ, NE '
CLASP

-Fixed point

Floating point (when hardware capp

- ability is pravided)

- Integer

Boolean \

Test (charactar strings) :
Hardware (depends upon, object ¢
computer, allows direct zeference to
machine ragisters)

Numb?tc = Fixed point
Floating point (when hard~
ware capability 1s provided)
Integer
v Boolean
o Mixed
Logical = Bit by bit manipui&tion of

‘.

numeric, textual, and logical formulds,

‘Booleaa ~ True or false results from

evaluation ‘of relations.

E1T

TABLE 1, LANGUAGE COMPARISON TABLE (CONTINUED)

TR IR L IR SET IR e . -

Agoignment Statements Sequenca Control .
28 . 29
ATOLL + Programs normally run in sequence by
. . ' step=gubstep number, Succeeding num~

Assignments provided by language :bers must be increasing but not

include program names, set tiwe, " |necessarily incremented by one, Sub~

set indexes, incremsnt indaxes, routines may be called by EXEC operator

sot flagas, discrotes which can be and may appear anywhera in programs PRI
.| Losued, astablishing profiles, GOTO opsrator causen unconditional B
1 changing profiles, aseigning transfor., Braunching statement number

termination procedures, declaring |contained within program statemento

names for PCM addrospes. causes conditionsl transfers, Execu=~

tive can force terminata program acgorf=

: ing to texmination progeduxe included Yun programe
ATLAS "

DEFINE and CALCULATE can aosign data |@0 TO, ALTER and REPEAT gllow trams- A _
values and text. 8AVE can asaign a fers, GO TO can be conditional with oL
now identifier (label) to an multiple destinations datermined only
{dentified velua, e.ge, BAVE, by Boolean Relational Raesults which
IMEASUREMENT! 'DRIET' : | mnust have been set in previous
. . statements, ALTER S8TEP~ = maans
change some fiald valucs as specified
and re-executae step~ -3 it 18 a
"non~preferred" verb and may some-
day be deleted, .
"CLASP ' ' CLASP etatements are executed in the
.. { sequence in which they appear except
8imple, multiple, nonacaler, and as altered by control statement@a.
exchange agsignmant statements are 8imple GOTO statement for transfer to
Pf971d°dQ - . { a statement label, Switched GOTO

L ’ , for -transfer to one of many state=~
' ' ments or CLOSES depending on an index
| valus, Statement of IF, THEN ELSE
T : : type used to transfer control or

* | execute a section of code based on the - -
evaluatien of a Boolaan formula,

N

MOLTOL, ATOLL=-II3 Provisions and . L ‘ _ B
‘ rules for assign~ R L o

ment are very . o

_ extanoive,‘includiﬁ L b

o . * . access to individua ' :

© . bits of a BITS _ _ L A N

variable, : - A S R L ,

R

TABLE 1, LANGUAGE COMPARISON TABLE (CONTINUED)

Exrror Conditions \

30

v e et ey o e pms 1 ws M ewem s Amwe S -

Operating System and
Equipment Handling

31

ATOLL

Hardware Zaf{lures are gensed during
run and arve displayed as are certain
discraetes which require teat console
oswitchas to be in outs position.
Diagnostic error table printed after
compilation of program contains
explicit errors, Undefined branch
table will be output to printer 1if
“undefined branches are found during
compilatipn.

——-rr o - .o P PRy ———

e

Jdanguage ﬁccommnddtas the outputing of
discretas and analogs, and the input-

ing of discretes and analogs. Display|

of wehicle status, print, and record
on wagnatic tape are included,
Calling of machine language Teot
Programs are also provided, In
‘addition, program control via hard-
ware response is included,

ATLAS
No provisiouns, -

- [N T T

Input/output provisions are made for
operator interfaces, records, and

There are no provisions for storage
or memory allocations, etce.

CLASP

No specific error condition sequence
control statemnnts provided. = :

No language statements relating to an
operating system are defined, Many
computer oriented language statements
are defined, ‘
No input/output capabilities are
provided, Use direct code and hard~
ware declaration capability.

Several arithmetic and data manipula=-
tion functions are provided in a sub-
programn library., Subprogram names
are considered primitives,

MOLTOL:

Assurcs a dafined segment doesn't
get divided by ovorlaya whan IMMED
1n used, . ,

definitive unit~under~test interfaces,

A

- '}‘4

v .
A

~F

>

TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED) -

Compiler Direatives

32

Teast=0Orientation

33

ATOLL

Compiler control cards direct input/
output options - (input from tape or
cards) output to printer only or to .’
printer and tape) whather edit
operation 1@ to follew, and whather
two or more object tapes are to ba
copied onto one tape, Comparicom
between master tape ‘and several

other tapaes 48 provided.

Objectives of language directed toward
Test Engineer's needs for inputing
his test requirements into the
computer gheckout systems

ATLAS :
Compiler may usa "flags' (1f needed)
from the first columm of the first
lina of a statemant, and the DEFINE
and SPRCIFY statements of the
preamble, Flags include 8 (repeated
later), B (entry point), B (destinatior
of GOIO0), C (commentary) and M (retain
progranmed connections), '

Actions include CIQSE, CONNECT, DIS-
CONNECT, OPEN, READ, SETUP, ADJUST,
APPLY, MEASURE, MONITOR, REMOVE,
VERIFY and WAIT FOR, all of which
are reasonably accurate represen=
tations- of expected actions, Others,
such as DELAY, CALCULATE, COMPARE,
DISPLAY, INDICATE, PRINT, RECORD,
are common actions that are well
understood by test persounsl, Tha
remaining actions are not difficult-

“LASP

Compiler directives are provided for
debugging and timing (used with a
target computer ogimulator), and for
space and. time optimizatiom and
direct code usage,

*

‘characteristics expliecitly idefined, .

Ior test engineard.

CLASP? hss no test oriented

.'. ’
¥
4

42

TABLE 1,

LANGUAGE COMPARISON TABLE (CONT INUED)

Enginearing-Orientation:

34

Man/Machina Interfaceo

35

ATOLL

While many terms are more engineer
oriented than test oriented, the
language itself 1is geared toward the
handling of test operations rather
than toward engineering problems,

o

The language provides for test enginaef

intervention from the test comnsole,
Information 1s also displayed to aid
his decision making, Test results.
can be displayed and/or printed,
SEMI operator and exrror conditions
provide for predetermined operator
dntervention, During course of test
run, test engineer may take ovar.n
control of his functions and

conduct test 'locally.

ATLAS Actions are test and programming
terms familiar to most engineers,
The NOUNS and their MODIFIERS (which
are the largest group of primitives),
are enginearing terms such ac AC
SIGNAL, SYNCHRO, TRIANGULAR WAVE
*8IGNAL, TACAN, VOLTAGE," PHASE BHIFT,
IMPEDANCE, MOD=-INDEX, etc, In
general, these terms would be mean-
iugless to other than engineers and
would be usaed ogly when the test
1oional wnits and pin designators

CLASP
Provida(-engineering oriented
mathematical capabilities but 1s .
primarily & programmer orionted
language, . g

3 ¢] f{gd E&em. ‘gtger tarms include dimen=~

PRINT, DISPLAY, and INUICATE are
specific operator interface terms,
Messages and variables are adequately
accommodated, 8ince ATLAS 1s other=
wise test equipment independent, thergq
are no provisions for operator in-
puts but an implication that they
exist as 1llustrated by WAIT FOR,
MANUAL INTERVENTION.

Provides massage text input and
output capabilitiea. .

43

FE

TABLE 1.

LANGUAGE COMPARISON TABLE (CONTINUED)

Rogords and Loga, Time Tags
36

Multiple/Parallcl, Aations
| 37

ATOLL

Provisions are made for ragcording
kaoulte on hard copy or on magnetic
tapes Whore time is relevant, time
tags appear in the statement,

The language does not provide for
multdple operations to be performed
simultaneously, IUDC controllers
permit simultaneous iantexrnal

" operations but the language does
not implement this feature, °

ATLAS

RECORD and PRINT are obviouoly
irtended to make records.
no specific provisions for t:ime
tagging records,

There- are

‘Not definable in A'l'm;-...: .

CLASP | ‘
No capability provided,

" | No capability piovided. :

MOLTOL, ATOLL~ II :

In¢hdde statemanta to otart and
aynchronize ’ parallel programa.

44

TABLE 1, LANGUAGE COMPARISON TABLE (CONTINUED)
Monitoring Interrupt Initlated Routinas ,
38 39

ATOLL

SCAN and TEST .provisions provide a
limited monitoring capability.
However, no continuous monitoring

Essentially no intarrupt cnpability
provided by the languaga.
Conditional provisions can give ..

capability 1o provided by the languag@e.control to the test console or

Function Executors can be called
from the ATOLL program (MNTR) aund the

frequency of testo spacifiaedj but the|,

ATOLL program is not interrupted
or alerted to any out-of-tolarance
conditiong,

branch within tha program,

ATLAS

MONITOR provides for repetitivaly
measuring anhd displaying a single
parametar until stopped by operator .
intervention, There are no

parallel actions definable in

ATLAS o S

'

No general provisions axcept
operator interrupt of MONITOR
routine,

CLASP . :
No capability provided.

»

Inhibit/Enable interrupt capability
provided, Capability for

execution of sequence of statements
upon occurrence of enable interrupt
and return 1s provided, S

.o

MOLTOL, ATOLL-II:

‘| Inelude provieions to POST

procedures to be executed for .
specific interrupts or operator - . ¢
intervention.

t

45

B 2 |

TABLE 1,

LANGUAGE COMPARISON TABLE (CONTINUED)

Taet Byatém‘Depandohny

40

Program (Project) Orientation

41

ATOLL
Considarable test system nomen-

'clature included within ATOLL

statementa,

Language has been implemented to
provide for specific test system
and for the S8aturn IB and V
programs,

ATLAS

There 1s dependancy only to the
extent that display, recording and
a univerval UUT signal interface
capabilities are assumed,

ATLAS 13 not project or preogram
oriented except by bhe limitation

of {its angineering terminology,.

/

CLASP

CLASP has many computer dependent
featuraes, such as in~line assembly
code capability, hardware register
control, and dependency on computer
arithmetic functions available, No
test system depandency since CLASP
18 not daesigned for test
oriantation.

No oriantation to any specific
project,

46 -

TABLE 1, LANGUAGE COMPARISON TABLE (CONTINUED)

Cloak & Timn'dqntrolled Agtions Program Controlled Indicators

42 . 43

ATOLL

-Language providas for countdowvm and 7 Index registoru can be used for
Greenwich tima activities, Dalayed ‘counters or program eontrole 48 flagl
tima {8 utilizod by operator. CDT can be defined,

or GMI ecan be compared with tast

ovent occurrence and program halted
until desired time 1s reachad,

ATLA '
TLAS The Boolean Relational Results (GO,

Thare are no oxplicit provisions for | LD, etec,) are set and reset by

extarnal glock or time imputa, ., | evaluations and remain set until

Individual statements allow time - | further evaluations occur, Any

delayu to be specified relative to other status indicators or flags

»other statements, . are awkward to create and maintain
in ATIAS.

i’

ClAsp : No specific indicators provided,
No specific capability ineluded in - . :
‘languagoe, .Recponse to clock interrup?s
‘could be handled via interrupt
capability, -

47

TABLE 1, - LANGUAGE COMPARISON TABLE (CONTINUED)

Multiparaemater Teats

bh

8pecinl Discipline Provisions

43

ATOLL

"'No provisions for multiparamater
testing,

Checkout system provides for special
disciplines but language has mot
unique capabilities for hydraulics,
pneumatics, or propulsion.

ATLAS

Zoch action verb involves a single
parameter, however, a group of such
tosts aould ba programmed in a - '
DEFIME procedure and subsequantly
"{,callad by a single PERFORM statement,

ATLAS contains many diseipline
oriented noun~modifier sets, €egey
PAM, TACAN, VOR, MANOMETRIC.

(NOTE: When MANOMETRIC is used the
signal 18 actually pressure--not an

electrical analog~w~the transducer 1s
a part of the test oystem controlled
by ATLAS),

CLASP
No capability provided,

Specialized terms available with
regard to target computer machine .
{instruction operations, .

48

TABLE 1.

LANGUAGE COMPARISON TABLE (CONTINUED)

Intorfaca Charaatovictie Tost lavel
Spogifications (Unit, Bubsybtem, Syotem)
46 47

ATOLL

Languaga does not accommodate ingex=

face chavacteristics of the unit
under test, (Input impedance,
output impadance)e : -

Language, checkout system, and
unit under test are dependent upon
installed subsystems and systems
test only, Cheakout system
gtrusture change would provida
black box teat sapability but
would be inefficiant,

-y

ATLAS

Interfaces, physical as well as
eleectrical, can be fully specified,
ag can agaeuracies, connection
identification, loading, and
ranged, ATLAS has some signal

type deficiencies that are to be’
added later, .

.

ATLAS 1o intended for unit (black
box) and lower levels of testing
by a very general purpose tegt
system, It can accommodate higher

. levels, but not efficiantly.

CLASP
No capability provided. -

No capability provided.-

49

TABLE 1, LANGUAGE COMPARISON TABLZ (CONTINUED)

Digital Interfagas

48

Execution Ratg Control

49

ATOLL

Digital interfaces are accommodatad
by machine language test programs

ATOLL cxegutive losca control during
machine language test program operae
t 10’“. . .

which can ba called by ATOLL oparators

No capability provided by the
language to vary vate of statement
execution, DELY operator may be
used to do this but would be ‘
highly inefficient, .

ATLAS

but lagks ¢omplote definition.
Additions are being atudied, o

10GIC 8IGNAL includes sams provisioms

There 1is no explicit execution rate
control, Statements are assumed to
be executed asynchronously as
rapidly as the test system can
respond, R

CLASP - L
No capability provided, ,

U T G

No capability préviaed. ;R'

MOLTOL§ and VIL provide for uplink
digital transmission, execution of

mission of digital data, and
verification of transmitted data.

UUT digital program, downlink trans-

MOLTOL provid:se for assuming 100

.{milliseconds butween exacution of

succeeding stepa until & statement -
changes the interval,

50

TABIE 1,

LANGUAGE COMPARISON TABLE (CONTINUED)

Tl

Unique Capabilitios

50

ATOLL

" electricals,

ATLAS

ATLAS 13 a test gystem programming
language rathex than a computer
language, Inputs and outputs are .
hardware system interfaces and '
may be physical as well as

-Provieion for modifiable constants (t

CLASP

ClASP has aseveral capabilities that a;
to othar higher level languages:

Extensive fixed point capabilities wi
Temporary wvariables which take on var

& program but can be modified betwe
B8ealing control over intermediate ree
Compiler optimization directives,
8tress on object code efficiency.

re considered unidua"with respact

ch respect to scaling,

lable attributes depending on usago.
nose which are fixaed for axacution of
n executions)

lltﬂ.

51

2°¢

‘1O

i . L . - . . . N
* - L . . - B : S -
. A s - . B s
. . - - ~ T N . R N . - .
s LS R .
: B S A
~ - . A LT - R i S .. -
.o, - . . : N R s N . N - . . .
. o . - . U . . -
: . . . T . .. R ‘. - - . . * t
. R M PR - : .
h M - N A3 - e . " . 4. - N - . N .
. \ . S . .-
B - M . H . M s . Te. - R
- .- . R FA . . . - : - .
- . . - . 4 * . - - - B : . N
- . . - - ¥
. ., . .
. L . . * .
- -~ - - - -
. . - .
AR . .. S e el e et e e - .. P S . e T
. - Y . ..
i - . .
. - : . .
b - R . -
'
- - -1 . -
— . . TN 4 s o~ e re . ~ . [P ST . - - . .

: PRLCEDT\‘SG TAGE TLA R NOE ;ﬁ»—i&b

IV, DEFICIENCIES AND PROBLEMS
OF EXISTING LANGUAGES

This section summarizes some of the major deficiencies of -the languages

. 8tudied. Section II contains additional discussions relative to the specific

languages.

The most common complaint about any TOL is that it is too. difficult to
learn to read and understand. This 18 usually brought about by the use of
mnemonics, fixed fields to distinquish parameters, etc. and by the use of
terms that the language designers erroneously considered to be generally
understood.

The facilities of the language, such as declarations, specifications, and
definitions, can usually be used by the writer to simplify his writing task
at the expense of readability. Since these same facilities can be used to
enhance readability (and sometimes are so used) the result becomes more a
function of the writer's motivation than of language definitions and rules.,
Some tendency to overwork DEFINE capabilities has been’ moted in ATLAS test .
procedures,

The absence of arithmetic capabilities has been noted for several of the
languages. It 18 possibly true that few system level test procedures would
require the capability, and also possible that vehicle test philosophies,
and organizational charters might influence the language definitions in this
area.

The absence of digita] data transfer and computer intercommunications
capability might be due tg the fact that the user is programmer-oriented
and the use of lower-level languages and codes is not sao much a problem.

Also, the language designer may find it particularly difficult to adequately -

provide the necessary terminology.

Inconsistency of rules is a problem mentioned for some languages, but
does not seem to be widespready It is suspected that this type of problem
is a result of "minimum-impact' type of change decisions after a language
has been implemented, .

-

53

-

PRECEDING PAGE BLANK NOT FILMEA)I

V. SAFEGUARDS AND CHECKING PROVISIONS

Ideally, the design of a Test Oriented Language should provide limited
entries and few rules to be followed to insure a minimum of human errors.
With few entries and few rules, program errors can be easlily detected and
corrections to the program made. Simple form and text would provide for
manual checking to be accomplished. However, safeguards to the system~
under-test require knowledge of the checkout system and the unit under test,
As the program length increases, (the number of operations to be performed
and the number of program statements increase) the building in of safeguards
and the provisions for checking become difficult, if not impossible.

The language may provide for restricting the number of consoles which
may interact with the program and thereby prevent an inadvertent action
from a non-allowed console. A specific subsystem under test will have a
well defined command interface, and any required stimuli (analog or discrete)
may be identified in the preamble. If, during the procedure portion of the
program, an illegal command function was issued, the compiler would not accept
the command, and the error would appear on the listing. Several languages
provide this capability by listing allowable command functions.

The language should have a capability for establishing a course of
action in the event a problem is encountered during the run of a program.
A problem that {is potentially hazardous or one left unattended, could
cause degradation of the test article. A backout sequence or a shutdown
sequence should be provided and the test console operator Iinformed of the
event and action being taken. In some languages this capability was implicit,
In other languages, where a definite operator did not exist, subroutines
could be established to provide this capability.

Provisions should be made in the test language for informing the test
console operator of marginal conditions, halting the program at a convenient
step, and allowing the test console operator to terminate or continue with
another sequence, dependent upon the informatiom presented on this display.

The more flexible the program input format and the greater the number of
rules, the more likely human error will result. Including safeguards and
checking provisions within the language appears to offer a limited capability
due to the relationship which exists between the test article, the checkout
system, the language and the human involved in the writing the program. The
majority of the checking and safeguardé must reside in the compiler for format
errors and illegal operations and in the operating executive for protection
of the system under test. B , ,

¢

55

de

= |

- -
IS . . .
. e e L S - .. -
- X .
. . O
- . - . vy
- -~ .
o "ot - . . :
\ .

i

cen T W
e SO AN AR R

e Y TG T iy e e

AN AL,

P B

VI. PROGRAMMING AND READING AIDS

©

In almost every instance, the extensive use of a programming language
has resulted in the generation of specific writing aids. Not so common,
however, is the origination of reading aids. This is considered unfortunate
mince there are genorally many times as many readers as writers, and

. decisions to automate testing and implement languages are more commonly
made by readers. '

One conclusion of this study task is that the greatest possible aid,
once the language has been defined, 18 & good user's manual with clear and
concise rules and explanations using terminology that is readily under-
standable by engineers. It is unfortunately true that a good TOL can be .
defeated because concepts used in defining and explaining it are totally TR R
new and difficult for a potential user. In some cases, simply the organi- <
zation of a manual may be a hurdle. Language specifications often utilize
terms, conventions, and concepts which make it unsuitable for use as a
user's manual. In such cases, a separate manual should be provided.
Examples, syntax diagrams, tabulation of rules, explanations of each
form and option, and a glossary of terms and primitives should be included.

Probably the most common writing aid with fixed format languages 1s
the coding form. In some cases, such as ATOLL, such a form is really
mandatory. Unfortunately, the reader with a print-out of the test program
has no such assistance. In the case of ATOLL-II and MOLTOL, the fixed
format fields can be respecified by the user, which might really complicate = .
the problem for readers. : : : .

Another common aid is a listing and brief explanation pamphlet of
key terms and concepts.

A reading aid in the ACE-S/C ADAP inplementation provides for the
‘compiler to print out, in pre-stored message form, an explanation of L
the actions directed by the ADAP "statement" or code. SR

In order.to decrease the writing time for some languages, many words _
have standard (primitive) abbreviations that are-recognized by the compiler .
or translator as identical to the unabbreviated words. When this is the
case, ag it is with CTL and VTL, the compiler may use the full word in
print-outs and thereby restore readability.

The implementation of the compiler to check source language programs
and provide output messages (perhaps codes) that enable the source code
writer to rapidly pinpoint errors is considered a necessity.

Perhaps the most promising aid to a writer is an interactive system
which allows the writer to construct statements and programs by yes/no,
multiple choice, and fill~in-the-blanks answers as directed or requested
by a display. The TOOL system has such a provision. It is described here
as an illustration of the concept. ' ’ S

57

TOOL Interactive Programming Aid

The TOOL system is a highly interactive system providing the user,
in this case a test engineer or astronaut, with complete instructions
on the use of the system. Messages to the user appear in three £drmag
status indicator lights, variable messages output on a CRT-like plasma

"~ display, and fixed messages placed on microfilm and automatically dis- o i

played as required.

The lights generally indicate the present status of the system in
response to operator pushbuttom activity. The variable messages are
displayed in response to the operator's action of typing in language
statements or in response to review requests. Error messages and the

- current language statement are displayed. The fixed messages are displayed R

to guide the user in the proper use of the system and to instruct the_
user in the syntax and semantics of the test language itself.

A geuneralized example of the operation of the TOOL system will
serve to clarify the preceding ideas. Consider the case where a test
engineer knows the sequence of steps to accomplish a desired test in
a conceptual form but has no experience in using TOOL. He sits at the
OCS console and pushes the "select sequence" pushbuttom. The select
light is turned on and'a microfilm frame is displayed asking the user to o
type in a name for his test and explaining how this is done. Upon entry
of the name, a fixed message informs the user that the name he has used
i8 not already taken and what he must enter next. The plasma screen
displays the name.

The user continues to type in the statements required to establish
prioritv, protection, and password requirements for the test. The intormation
is build up by the user as explained by the microfilm frames and appears on
the plasma screen.

At the completion of this operation, a microfilm frame displaying the
allowable choice of primitives is displayed. The user selects one, and the
name of the primitive appears on the plasma. At the same time the infor-
mation concerning the first modifier required appears on the microfilm
display. The user responds accordingly and continues on in response to
other microfilm frames until he completes a statement in the language. The
statement is build up on the plasma display during this process.

When the statement 18 completed, the microfilm frame displaying the
choice of language primitives available appears again. A new statement is
constructed as above aund this process continues unt{l the user has created
a complete test. :

A microfilm frame then appears giving the user instructions and options
as to the proper disposal of the test he has just written. Should he desire
to review his test he may do so, looking at each statement in total, or
at each modifier in order. Information with respect to altering or adding
to his statements appears during this review cycle. : ‘

i
[}
i
)

58

N

. TOOL Interactive Programming Aid (Comt)

When the user has completed the review and/or modification of his
test; a microfilm frame again appears giving him instructions as to the
disposal of his test. He may choose to save it for future use, exegute
it, or diecard fe. Proper disposal of the test is selected, complating
the process of creating an executable test using the TOOL system.

59

PRECEDING PAGE BLANK NOT EILNHQ)

VII. CONCLUSIONS

This study task has investigated both the languages and some of

thelr applications and usage environments., Those that have been applied

have indesad aidad in aeoemplishing automation by aiding the communications
problem, All could be improved. '

It {8 interesting to note that practically all Test Oriented Languages
(TOL's) established the same objectives to direct the design of a language
useful in accomplishing automatic checkout tasks. This 1s not incongruous
as the requirements which originated ‘the need for a TOL were basic to all
automatic checkout systems: time, schedule, cost, communication. The test
procedure writer was not intimately familiar with the computer or automation
techniques; the programmer was not familiar with the engineering terms used in U
testing and had no knowledge of the vehicle to be tested and littie inclinatiom =,
to learn. On the other hand, the test engineer was completely swamped with the
requirements of his own task and felt put-upon by having to learn how to fill
out the forms necessary to provide test data to the programmers. Communication
between these two worlds was often a real obstacle.

It was logical to expect that similar testing groups throughout the
country would independently assess the problems of automatic checkout and

- immediately determine similar methods for improving communications, providing

for accomplishing many tasks with one by specifying the requirements for a
TOL, and reducing schedule and cost impacts.

However, few TOL's have been able to accomplish all of these objectives.
No doubt, compromise has affected the end result. Having a specific test
article in mind which was well developed and test equipment available

" undoubtedly affected the resulting TOL., In all examples studied, with one

exception, this has been the case,

A common tendency with all of the TOL's studied (perhaps ATLAS excepted)
18 for the language to be writer oriented. The common reader oriented
objectives seem to be subverted by the writer's natural desire to reduce
the number of characters to be written on the coding form. This results
in abbreviations, mnemonics, fixed formats, unnatural (but shorter) word vgage,
and other forms of coding that are non-English like and require study by
engineers who should be able to understand the test programs but don't really N
have the time. The writer is generally supported by the compiler designer '
because of the simplifications possible in recognizing and analyzing source
language primitives and statements. Since the writer is frequently dedicated
full-time to the task, the time to learn the language is rot of major significance.
He is also more apt to be involved in the language definitionm.

The CLASP language, as presently defined, is not suitable for direct use

in a test-oriented environment, although some of its features in the non-test
oriented terms are as suitable as those of most TOL's, '

61 "i'. ". ‘ ' !

VII. CONCLUSIONS (Cont)

Noune of the TOLs considered in this study would fully satisfy the
broad test-oriented applications area as envisioned by the authors. Work
would need to be done to further the goal of test system independence of
the languages other than ATLAS. ATLAS would need additions for system-
oriented functions, and probably deletiomns in detailed specifications areas.

It i8 believed that almost every desirable feature of a new language
is provided by ome or more of the languages studied. The next phase of

the study will concentrate on the identification and Justification of these
desirable features.

62

Assgmbler

Asynchronous

Attribute

Compiler -

Compiler
Directives

Concurrent ...

Execution

Cuing

Declarative
Statement - .

Delimiter

Function

VIII DEFINITIONS

A program that prepares a machine language program from a
source program which consists of symbolic notation for both
operation codes and addresses in a one-to-one relationship
with machine language, 2

-

Occurring without a regular time relationship. The occurrence
of an asynchronous event {s unpredictable with regpect to
instruction sequence.

A characteristic attached to a data item. Tl

-

A program that prepares a machine language program from a
source language program by making use of the overall logic
structure of the source program, or gensrating more than
one machine instruction for each source language statement,
or bath,

<. Information supplied to a compiler to provide assistance in

translation of a source program which does not result in

.direct creation of executable code,

Execution of computer programs in a multiprogramming mode.

The assistance provided a program writer by messages auto-
matically generated by a computer in an interactive environment,

A special case of compiler directive which provides information -

- to the compilter concerning the data elements of a program,

A character (or characters) thdt categorizes, separates and/or
organizes items of data or language statements.

© A special case of a subroutine with a single output which can

be used within expressions just as a number or variable may
be used, _ _ : | ' - '

63

Global Scope

Higher Order -
Language

Identifier

Imperative
Statement

Interactive

Interpreter

Literal

L cal JScope

Machine Language

That scope of a variable which specifies that the variable

has the same meaning for each use of the variable throughout
a computer program and all its subunits.

"~ A language which enables the user to write programs for

a computer without the need for detailed knowledge of the
actual workings of the computer. Generally requires signifi-
cantly fewer statements than a lower order language.

A character or set of characters whose purpose is to identify,
indicate, label or name a body of data, such as a procedure,
function or variable, It is assigned, determined by the
programmer rather than the language: coatrasts with primitive.

The languape statements that specify executable actions to be
performed by the programmed system or change the sequence of
such actiomns.

Pertaining to a system in which a user can actively communicate
with a computer while creating and/or executing programs.

A program which executes a source program on a unit-by-unit
basis. In the OCS application, a program that takes the data
output from a translator, which represents source program
statements, and passes it to appropriate routines for execution.

A string of characters which represents itself rather than the
location of something else,

o
That scope of a variable which specified that the variable have
the same meaning for use only within a particular subunit of a
computer program and is undefined for any references outside
of that subunit,

A language that is used directly by a machine. It conaists of
the actual binary bits which are interpreted by che computer
hardware to control instruction ‘execution. : a

64

Macro Capability A language capability that allows a user to sp2cify a number
of language statements via the use of a single language
etatemont. The single language statement is, in effect, a

new primitive of the language.

Multiprogramming Pertaining to theiinterleaved execution of two or more programs
by a computer. '

Optimization Refers to techniques for the generation of space or time
' efficient machine code output from compilers. BTN
: . A =,
Primitive The set of basic elements of a language as opposed to user

defined identifiers. Primitives consist of graphic operators,
those characters which have a defined semantic meaning as an
operator; keywords, those words which have a fixed meaning in

the language; and punctuation characters which serve as delimiters.

Problem Oriented -
Language A programming language designed for the convenient expression
of a given class of problems. :

Procedure Oriented
Language . A programming language designed for the convenient expression
: of procedures used in the solution of a wide class of problems,

Relational Pertaining to the relationships between quantities, i.e.,
' equal to, greater than, less than,etc. Sometimes called
Boolean Relational because of true or false type of results.

Relocation The process of moving a program from one location in storage to
another and adjusting the necessary address references so that
the program can be executed in its new location.

Scope : Pertains to that portion of a computer program throughout which
: a variable has meaning. See global scope and local scope.

Self-Extension That capability of a language which allows the user to define
new primitives for the language. Most commonly represented
by a macro and a function capability. '

i
i

65 |

i

] -

Semantics
Special Purpose
Language

Source Language

Subset

Syantax

Target Computer

Translator

The relationships between symbols and their meanings.

A language;designed to satisfy a single objective, One
" such objective is the solution of problems in a particular

application area.

A language used to write computer programs for input to
a given translation process,

4

A language which contains soie of the features of gnothér
language but not all the features and/or contains restric=
tions not present in the original language.)

The rules covering the structure of expressions in a language, -

The computer for which executable machine instructions are
produced by a compiler and not necessarily the same computer
utilized by the compiler. ‘

A program that converts source language statements into
another form or language for further processing.

- t

66

1)

2)

3)

4)

5)

. o

7)

8)
9)
“10)

11)

12)

13)

14)

15)

IX. BIBLIOGRAPHY

Programming Languages: History and Fundamentals, Jean E. Sammet,
Prentice-Hall Inc., Englewood Cliffs, N. Y., 1969, Chapters 1, 2 and 3.

Flight Computar and Languaga Procesaor Btudy, R. J. Rubey, W. 6. Nielsen,
and L. Bentley, July 1969, Contract No. NAS 12-2005, NASA, Prepared by
Logicon, Inc.

Spaceborne Software Systems Study, Technical Documentation Report No.
SSD-TR-67-11; Vol. 1, Summary; Vo. 2, Survey; Analysis and Recommendations}
and Vol, 3, Recommendation for a Common Space Programming Language.

Space Programming Language/Mark II Programmer's Manual, 20 February 1970,
SAMSO TR 69-421, Developed by System Development Corporation for the
Air Force. : :

Design of an Onboard Checkout System, Final Report, Volume II - Technical
Results, NAS 9-4899, MCR-66-12, March 1966.

Prototype Digital Test Set for the Checkout Systems Experimental Facility,
Operations/Maintenance Manual, NAS 9-6630, MCR-67-260, July 1967.

Flight Packaged Onboard Checkout System Development Unit, Operation and
Maintenance Manual, NAS 9-8000, MCR-69-399 (Rev. 1), November 1969.

Flight Packaged Onboard Checkout Systems Development Unit, Software
Documentation, Overall Specification - Level 2, TOOL - Test Oriented
Onboard Language System, NAS 9-8000, MCR-69-192 (Rev. 2), March 1970,

ATLASS - "Abbreviated Test Language for Avionics Systems,' ARINC
Specification 416-1, 1 June 1969, Aeronautical Radio, Inc., 2551 Riva
Road, Annapolis, Maryland 21401,

ATOLL ~ "Acceptance Test or Launch Language,' Appendix A, Specifications
of the Operating System for the Saturn V Launch Computer Complex, Vol., II,
IBM No. 66~232-0001, NASA MSFC,

MOLTOL - 'MOLTOL Test Writer's Reference Manual," First and Last Version,
Friday, June 13, 1960,

<

"ATLAS - A Standard Compiler Input Language for Commercial Airlines,
Thomas A. Ellison and Laurence S. O'Neill, Proceedings of the Automatic
Support Systems Symposium for Advanced Maintainability., St. Louis Section,

IEEE, November 1968, .

ATOLL-II Language Reference Manual, by General Electric Company, Huntsville
Operation, for NASA MSFC Computation Laboratory.

CTL - Cage Test Language Description, Martin Marietta Corporatiom,
1 February 1968. . :

VIL - Viking Test Language Deseription, MMC Contract No. NAS1-9000,
29 December 1969. ’ ‘ :

67

16)
17)

18)

19)

BIBLIOGRAPHY (Cont)

ADAP - MA0201-D499, Intercemmunication Subprogram Specifications, North
American Aviation Training Manual, ACE-S/C Programming. .
General Eleetric Company, Volume 3, Computer Programming,. 24 January 1969.

ACEP - ATM-U002-0, Automatic Sequence Execution and Processor (ASEP),

General Electric Company, Huntsville, Alabama.

Advanced Software System Study, Final Report, 69-811-2102, General Electric
Company Contract NASw-410 S/A No. KSC-360, December 1969,

Automatic Checkout in the Saturn Program, Charles O. Brooks, Jr. and

Max E. Rosenthal, NASA MSFC, from Automation in Electronics Test Equipment,
Volume III, New York University, April 1967. ' ' * '

68 L

" APPENDIX

AN ATLAS COMPILER

The Martron Systems of Martin Marietta Denver Division is currently
producing an ATLAS compiler and ATLAS test procedures for airlines use.

A team of test writers who have little or no programming experience has

" been recruited to provide the required procedures. A training program

has been iunstituted which requires a new test writer to create an ATLAS

test sequence from a sample problem which contains 80% of the typical
problems for which the ATLAS language is used. The learning curve for these
personnel varies from one week to one month, depending partially on their
background in test specifications. At the end of this time they are success-
fully producing ATLAS test procedures. '

-

Sample ATLAS test procedures have been reviewed by airlines personnel with
20 or more years experience in testing of aircraft components, but with little
or no programming experience, These procedures have been judged to be very
understandable and have been well received by the test engineers. Part of the
reason for this acceptance has been Martron's policy of keeping all procedures
simple and straightforward. Complex statement configurations possible in
ATLAS have been avoided in production of the test procedures,

Test procedures have been implemented for the checkout of both analog
and pneumatic units. The language has been capable of meeting all require-
ments in these areas, However, it appears that the language may need
expansion to better fit the requirements of airline checkout. One area of
expansion concerns better synchronization capabilities which are required

for the testing of digital and logic type units.

The Martron Systems' ATLAS compiler implements a major portion of the
ATLAS language. It is written {n FORTRAN IV for use on a 360/65 computer
system with 228 K user core, (1) 2314 disk, and (1) 800 BPI 9 track tape
drive, The compiler produces object code for the Honeywell 316 computer
which is part of the Martron 1200 test equipment. The basic Martron equipment
includes the following stimulus and measurement devices,

1 - 512 pin programmable switching matrix. .

"1 - D-A converter, capacity + 100 volts DC at 1 amp.
1 - D-A converter, capacity + 10 volts DC at 100 ma. 4
3 - D-A converters, capacity + 100 ‘VAC or + 10 VDC g
2 - Digital to Synchro converters.
1 - Analog to digital converter with input conditions
1 - Synchro to digital converter. :

26 - Constant voltage power supplies

The compiler is divided into five main sections (eetpp,pass.l; pass 2,
pass 3 and the object code lister). ’ T : E

[l

69

=

I.

iT.

III.

IV,

APPENDIX

AN ATLAS COMPILER (Cont)

Setug

The setup module divides blank common into 100 equal units and
allocates these units to 8 separate tables, each table receiving
a percentage of the available storage.

After allocating blank common setup scans the subroutine library
files and builds an entry in the procedure reference table for
each program in the library.

After completing the procedure reference table, setup then calls

the load module of pass 3 to load each resident program and
complete linkage between resident programs. The resident system
is then written on the output tape and becomes the real-time
monitor for the MARTRON 1200, '

Pass 1

This module reads one statement at a time, and performs syntax
checking. 1In doing so, it translates the statement into a coded
form, which is a fixed format determined by its verb., Numbers are
replaced by literal table pointers, symbols are replaced by symbol
table pointers, and connector identifiers are replaced by interface
table pointers, ‘ :

Pass 2

Pass 2 translates the coded verbs generated by Pass 1 into the
appropriate machine instructions, subroutine calls, and data to
perform the verbs. In doing this, counts are kept of the number
of words generated and the total size of subroutines which have
been called. When the amount of object memory available has been
exceeded, the program is segmented and an end of assembly flag is
generated,

Translation is then resumed at the point where the program was
segmented, after setting the above-mentioned counters to zero.

The result of Pass 2 is a series of relocatable object modules
which reside on intermediate disc storage.

Pass 3

The relocatable object modules generated by Pass 2 are read in

and loaded into a core-image array, one at a time., After loading

a segment, the subroutines which it requires are loaded and linkage
is completed., The completed segmeut is then written on the output
tape.

This process is repeated for each segment of the ATIAS program,
. :
70 ;

'
|
i

IRRP

APPENDIX

AN ATIAS COMPILER (Cont)

V. Qbisct Code Lister

The object code lister utilizes the output of Pass 2 to create a
listing which contains octal representations of machine code

generated, identification of subroutines called, and those statements
flagged as branch destinationa.

71

INPUT

ATLAS SEQUENCE

-

PASS 1

SYNTAX CHECKING,
EDITING. (FILTERS &
PASSES REQUIRED -DATA

Vi

PASS 2

CONSTRUCTS
RELOCATABLE HONEY=-
WELL MACHINE CODE
CALLS TO MARTIN &
HONEYWELL ROUTINES
AND LINKAGE TABLES
{ TO LOADER,

LIBRARY

1 HONEYWELL SUPPLIED

PASS 3

CONSTRUCTS
LOADABLE FILE BY:
MAKING PASS 2
OUTPUT ABSOLUTE

& ADDING ROUTINES -
FROM LIBRARY
REQUIRED OF EACH
SEGMENT

AV

—~y

OUTPUT

HONEYWELL EXECUTABLE
LOADER & SEQUENCE &
LIBRARY ROUTINES AS
REQUIRED BY EACH

L SEGMENT

72

2 _MARTRON SUPPLIED

